Logo
0.5.0

Using mvlearn

  • Overview of mvlearn
  • Install
    • pip installation instructions
    • conda installation instructions
      • Including optional dependencies for full functionality
    • Python package dependencies
    • Hardware requirements
    • OS Requirements
    • Testing
  • Examples Gallery
    • Examples on cluster
      • Multiview Coregularized Spectral Clustering Comparison
      • Multiview Spherical KMeans Tutorial
      • Multiview KMeans Tutorial
      • Multiview vs. Singleview Spectral Clustering of UCI Multiview Digits
      • Multiview vs. Singleview KMeans
      • Multiview Spectral Clustering Tutorial
      • Multiview vs. Singleview Spectral Clustering
      • Conditional Independence of Views on Multiview Spectral Clustering
      • Conditional Independence of Views on Multiview KMeans Clustering
    • Examples on compose
      • Constructing multiple views to classify singleview data
      • Integrating mvlearn with scikit-learn
    • Examples on datasets
      • Loading and Viewing the UCI Multiple Features Dataset
      • Generating Multiview Data from Gaussian Mixtures
      • An mvlearn case study: the Nutrimouse dataset
    • Examples on decomposition
      • ICA: a tutorial
      • Multiview Independent Component Analysis (ICA) Comparison
      • Angle-based Joint and Individual Variation Explained (AJIVE)
    • Examples on embed
      • Generalized Canonical Correlation Analysis (GCCA) Tutorial
      • CCA Tutorial
      • Deep CCA (DCCA) Tutorial
      • Partial Gram-Schmidt Orthogonalization (PGSO) for KMCCA
      • Multidimensional Scaling (MVMDS) Tutorial
      • Comparing CCA Variants
      • Kernel MCCA (KMCCA) Tutorial
    • Examples on plotting
      • Quickly Visualizing Multiview Data
      • Plotting Multiview Data with a Cross-view Plot
    • Examples on semi_supervised
      • 2-View Semi-Supervised Regression
      • 2-View Semi-Supervised Classification
  • Reference
    • Embedding
      • Canonical Correlation Analysis (CCA)
      • Multiview Canonical Correlation Analysis (MCCA)
      • Kernel MCCA
      • Generalized Canonical Correlation Analysis (GCCA)
      • Deep Canonical Correlation Analysis (DCCA)
      • Multiview Multidimensional Scaling
      • Split Autoencoder
      • DCCA Utilities
      • Dimension Selection
    • Decomposition
      • Multiview ICA
      • Group ICA
      • Group PCA
      • Angle-Based Joint and Individual Variation Explained (AJIVE)
    • Clustering
      • Multiview Spectral Clustering
      • Co-Regularized Multiview Spectral Clustering
      • Multiview K Means
      • Multiview Spherical K Means
    • Semi-Supervised
      • Cotraining Classifier
      • Cotraining Regressor
    • Model Selection
      • Cross Validation
      • Train-Test Split
    • Compose
      • AverageMerger
      • ConcatMerger
      • RandomGaussianProjection
      • RandomSubspaceMethod
      • SimpleSplitter
      • ViewClassifier
      • ViewTransformer
    • Multiview Datasets
      • UCI multiple feature dataset
      • Nutrimouse dataset
      • Data Simulator
      • Factor Model
    • Plotting
      • Quick Visualize
      • Crossviews Plot
    • Utility Functions
      • IO

Developer Information

  • Contributing to mvlearn
    • Submitting a bug report or a feature request
      • How to make a good bug report
    • Contributing Code
      • Pull Request Checklist
    • Guidelines
      • Coding Guidelines
      • Docstring Guidelines
    • API of mvlearn Objects
      • Estimators
      • Additional Functionality
  • Changelog
    • Version 0.5.0
    • Version 0.4.1
    • Version 0.4.0
      • mvlearn.compose
      • mvlearn.construct
      • mvlearn.decomposition
      • mvlearn.embed
      • mvlearn.model_selection
      • mvlearn.utils
    • Version 0.3.0
    • Patch 0.2.1
    • Version 0.2.0
    • Version 0.1.0
  • License

Useful Links

  • mvlearn @ GitHub
  • mvlearn @ PyPI
  • Issue Tracker
mvlearn
  • »
  • Examples Gallery
  • Edit on GitHub

Examples Gallery¶

The examples gallery provides working code samples demonstrating what can be done with the mvlearn library.

Examples on cluster¶

Multiview Coregularized Spectral Clustering Comparison

Multiview Coregularized Spectral Clustering Comparison¶

Multiview Spherical KMeans Tutorial

Multiview Spherical KMeans Tutorial¶

Multiview KMeans Tutorial

Multiview KMeans Tutorial¶

Multiview vs. Singleview Spectral Clustering of UCI Multiview Digits

Multiview vs. Singleview Spectral Clustering of UCI Multiview Digits¶

Multiview vs. Singleview KMeans

Multiview vs. Singleview KMeans¶

Multiview Spectral Clustering Tutorial

Multiview Spectral Clustering Tutorial¶

Multiview vs. Singleview Spectral Clustering

Multiview vs. Singleview Spectral Clustering¶

Conditional Independence of Views on Multiview Spectral Clustering

Conditional Independence of Views on Multiview Spectral Clustering¶

Conditional Independence of Views on Multiview KMeans Clustering

Conditional Independence of Views on Multiview KMeans Clustering¶

Examples on compose¶

Demonstrates usage of the methods and their integration with sklearn estimators and pipelines.

Constructing multiple views to classify singleview data

Constructing multiple views to classify singleview data¶

Integrating mvlearn with scikit-learn

Integrating mvlearn with scikit-learn¶

Examples on datasets¶

Loading and Viewing the UCI Multiple Features Dataset

Loading and Viewing the UCI Multiple Features Dataset¶

Generating Multiview Data from Gaussian Mixtures

Generating Multiview Data from Gaussian Mixtures¶

An mvlearn case study: the Nutrimouse dataset

An mvlearn case study: the Nutrimouse dataset¶

Examples on decomposition¶

ICA: a tutorial

ICA: a tutorial¶

Multiview Independent Component Analysis (ICA) Comparison

Multiview Independent Component Analysis (ICA) Comparison¶

Angle-based Joint and Individual Variation Explained (AJIVE)

Angle-based Joint and Individual Variation Explained (AJIVE)¶

Examples on embed¶

Generalized Canonical Correlation Analysis (GCCA) Tutorial

Generalized Canonical Correlation Analysis (GCCA) Tutorial¶

CCA Tutorial

CCA Tutorial¶

Deep CCA (DCCA) Tutorial

Deep CCA (DCCA) Tutorial¶

Partial Gram-Schmidt Orthogonalization (PGSO) for KMCCA

Partial Gram-Schmidt Orthogonalization (PGSO) for KMCCA¶

Multidimensional Scaling (MVMDS) Tutorial

Multidimensional Scaling (MVMDS) Tutorial¶

Comparing CCA Variants

Comparing CCA Variants¶

Kernel MCCA (KMCCA) Tutorial

Kernel MCCA (KMCCA) Tutorial¶

Examples on plotting¶

Quickly Visualizing Multiview Data

Quickly Visualizing Multiview Data¶

Plotting Multiview Data with a Cross-view Plot

Plotting Multiview Data with a Cross-view Plot¶

Examples on semi_supervised¶

2-View Semi-Supervised Regression

2-View Semi-Supervised Regression¶

2-View Semi-Supervised Classification

2-View Semi-Supervised Classification¶

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery

Previous Next

© Copyright 2019-2020.

Built with Sphinx using a theme provided by Read the Docs.